Results 1 to 4 of 4

Thread Information

Users Browsing this Thread

There are currently 1 users browsing this thread. (0 members and 1 guests)

  1. #1
    Senior Member
    Join Date
    Nov 2004
    Location
    Alabama
    Posts
    2,137

    CDC considers Texas for Morgellons study

    Pretty frighting stuff! I read some of the question people had on one of the sites and it appears this is really happening. I will check snoops


    http://www.mysanantonio.com/news/metro/ ... 3fade.html


    CDC considers Texas for Morgellons study


    Web Posted: 07/25/2006 12:50 AM CDT
    Deborah Knapp
    KENS 5 Eyewitness News

    The Centers for Disease Control and Prevention is launching a study of Morgellons disease that may target South Texas where more than 100 people are suffering from the illness.

    Cindy Casey suffers from Morgellons. Symptoms of the disease include lesions that leave scars, the sensation of bugs crawling under the skin, and fibers that pop out of the skin.

    "Mostly black and white. Some of them were blue, and some of them were red. The whole area gets really sore and you feel some sort of crawling sensation around the lesion," Casey said.

    Like others, Casey was diagnosed with delusional parasitosis * delusions of parasites. Most doctors do not recognize Morgellons as a disease.

    Web extras
    July 24:Video: See the broadcastVideo: Extended interview with Dr. Randy WymoreVideo: Extended interview with patient Cindy CaseyTo ask the CDC a Morgellons question, e-mail morgellonssyndrome@cdc.gov

    May 23:
    Web chat: Read the transcript of a Web chat with Ginger Savely

    May 22:
    CDC forming Morgellons task forceVideo: Watch the broadcast

    May 11:
    Doctors puzzled over bizarre infection surfacing in South TexasVideo: Watch the broadcastWeb exclusive interview: Ginger Savely talks more on MorgellonsWeb link: Morgellons Research Foundation

    However, one medical school is taking Morgellons very seriously. Most of the research on Morgellons is being done at Oklahoma State University in Tulsa. Doctors and scientists at OSU said this disease is real, and it's frightening.

    "I am 100 percent convinced that Morgellons is a real disease pathology," said Dr. Randy Wymore, an assistant professor of pharmacology and physiology at OSU.

    Wymore has spent the past year studying hundreds of fibers from Morgellons patients.

    "The samples do look very similar to one another," he said.

    Wymore added that the fibers don't look like anything found in textiles. He has also determined that the fibers are not rubbing off from clothing, because doctors at OSU have found the fibers inside the body.

    "We were able to observe fibers under completely unbroken skin," he said.

    Dr. Rhonda Casey has examined more than 30 Morgellons patients.

    "There's no question in my mind that it's a real disease," she said.

    Dr. Casey has extracted fibers from under the skin, and examined them under a microscope.

    "If it were not for the fibers, the patients would all be taken seriously. So I think even though the fibers may be a key to helping us diagnose this disease, they have also been a hinderance to it even being accepted as a real disease in the past," she said.

    Even thought the lesions and fibers are the most visible symptoms, doctors said the more damaging effects of this disease are the nerve and neurological damage, which affects the ability to think and move.

    "Trouble concentrating, trouble communicating, and problems thinking of the words you want to say, and how you want to express yourself," patient Cindy Casey said.

    However, it is the symptoms that sound like science fiction that make this disease like no other.

    "I pulled some fibers out, and I was just taking a look at it, and the fibers just started to move around, kind of around each other," Cindy Casey said. "And I screamed to Charles (my husband), 'Charles, come here and look, because everyone's been telling me I'm crazy. Charles, look at this,' and he looked at it, and yeah, he saw it too."

    "This one I didn't want to believe," Charles Casey said.

    Incidents like that are just one more bizarre part to this puzzling disease that seems to be spreading.

    "There is the slightly frightening component to it that we don't know what causes this. If more and more people are coming down with Morgellons, we need to get a handle on this," Wymore said. "Is there an environmental component that needs to be addressed? Is it contagious? These are all things that we don't know the answer to at this point."

    The CDC has formed a task force to investigate Morgellons, and they are launching a study to find out where this condition is most common and who it affects. Texas is one of the states with the most cases per capita, and the epidemiology study may be conducted here.

    The CDC has setup an e-mail address for people to ask questions, because of the volume of calls following the reports that aired on KENS 5 in May. That e-mail address is morgellonssyndrome@cdc.gov .
    Resistance to tyrants is obedience to God

  2. #2
    Senior Member Dixie's Avatar
    Join Date
    Apr 2006
    Location
    Texas - Occupied State - The Front Line
    Posts
    35,070
    I'm sure Coto knows where to find the picutres of this because they have been posted on Alipac. The pictures are freaky.

    Dixie[/i]
    Join our efforts to Secure America's Borders and End Illegal Immigration by Joining ALIPAC's E-Mail Alerts network (CLICK HERE)

  3. #3
    Administrator ALIPAC's Avatar
    Join Date
    Nov 2004
    Location
    Gheen, Minnesota, United States
    Posts
    67,706
    We already have the pictures up. Check the search feature at the top of the posting areas.

    http://www.alipac.us/modules.php?name=F ... morgellons

    W
    Join our efforts to Secure America's Borders and End Illegal Immigration by Joining ALIPAC's E-Mail Alerts network (CLICK HERE)

  4. #4
    Senior Member
    Join Date
    Nov 2004
    Location
    Alabama
    Posts
    2,137

    chagas

    still looking on cdc site about morgellons disease and ran across this little tidbit!


    http://www.cdc.gov/ncidod/EID/vol9no1/02-0217.htm



    Dispatch
    Chagas Disease in a Domestic Transmission Cycle, Southern Texas, USA

    Charles B. Beard,* Greg Pye,† Frank J. Steurer,* Ray Rodriguez,‡ Richard Campman,† A. Townsend Peterson,§ Janine Ramsey,¶ Robert A. Wirtz,* and Laura E. Robinson†
    *Centers for Disease Control and Prevention, Atlanta, Georgia, USA; †Texas Department of Health, Harlingen, Texas, USA; ‡Cameron County Health Department, San Benito, Texas, USA; §Natural History Museum, University of Kansas, Lawrence, Kansas, USA; ¶Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública Cuernavaca, Morelos, México

    Suggested citation for this article: Beard CB, Pye G, Steurer FJ, Rodriguez R, Campman R, Peterson AT, et al. Chagas disease in a domestic transmission cycle in southern Texas, USA. Emerg Infect Dis [serial online] 2003 Jan [date cited]. Available from: URL: http://www.cdc.gov/ncidod/EID/vol9no1/02-0217.htm

    After three dogs died from acute Chagas cardiomyopathy at one location, an investigation was conducted of the home, garage, and grounds of the owner. A serologic study was conducted on stray dogs, and an ecologic niche model was developed to predict areas where the vector Triatoma gerstaeckeri might be expected.

    The Study

    Chagas disease is caused by the parasitic protozoan Trypanosoma cruzi and affects an estimated 12 million persons throughout South and Central America and Mexico (1,2). In the United States, the disease exists almost exclusively as a zoonosis; only five autochthonous insect-borne cases have been reported in humans (3). The distribution of Chagas disease in the United States includes approximately the southern half of the country. Twelve species of triatomines are known to occur in the United States, the most important being Triatoma sanguisuga in the eastern United States, Triatoma gerstaeckeri in the region of Texas and New Mexico, and Triatoma rubida and Triatoma protracta in Arizona and California (4,5).
    Figure 1
    Figure


    Click to view enlarged image

    Figure 1. San Benito, Texas, where three dogs died of Chagas disease.




    Figure 2

    Figure
    Click to view enlarged image

    Figure 2. View of location of the three dogs that died of Chagas disease.



    Figure 3

    Figure
    Click to view enlarged image

    Figure 3. Triatoma gerstaeckeri collected at the locality.



    Figure 4

    Figure
    Click to view enlarged image

    Figure 4. Trypanosoma cruzi parasites in hindgut of a field-collected triatomine bugs.



    Figure 5

    Figure
    Click to view enlarged image

    Figure 5. Genetic Algorithm for Rule-set Prediction-generated ecologic niche model, predicting distribution of Triatoma gerstaeckeri...

    In the small community of San Benito, Texas (Figure 1), after three pet dogs died from Chagas cardiomyopathy, personnel from the Texas Department of Health, the Cameron County Health Department, Environmental Health Division, and the Centers for Disease Control and Prevention (CDC) inspected the owner’s home, garage, and grounds for potential triatomine insect vectors (Figure 2). Blood was drawn from four dogs and two persons residing on the property and tested for antibodies to T. cruzi. A second site approximately 2 miles away was also inspected and blood drawn from three dogs, one of which had been diagnosed as positive for T. cruzi by the original veterinarian. A follow-up serologic survey was conducted to determine the percentage of the stray dogs in Cameron County that would test positive for Chagas disease antibodies. Once a week, samples from stray dogs were shipped to CDC for testing. Each sample was issued an identification number; and information on the animal’s location, sex, age, health condition, and size was recorded. Serum specimens were tested for anti-T. cruzi antibodies by indirect immunofluorescence (IIF) (6,7).

    Ecologic niches and potential geographic distributions were modeled by using the Genetic Algorithm for Rule-set Prediction (GARP) (8-10). In general, the procedure focuses on modeling ecologic niches, the conjunction of ecologic conditions within which a species is able to maintain populations without immigration. Specifically, GARP relates ecologic characteristics of known occurrence points to those of points randomly sampled from the rest of the study region, seeking to develop a series of decision rules that best summarizes those factors associated with the species’ presence. Recently, this method has been used to study the distribution of species complex members and vector-reservoir relationships with respect to Chagas disease (11,12).

    Inspection of the residence where the three dogs lived indicated a substantial infestation with the triatomine species T. gerstaeckeri (Figure 3). Triatomines were collected under cement slabs of a backyard patio adjacent to the house and from a garage located approximately 75 feet from the home (Figure 2). Of 31 live triatomines collected, including adults of both sexes and immature stages (i.e., two fifth-instar nymphs), 24 contained T. cruzi-like parasites in their hindgut (Figure 4). Cultures were established from triatomine urine collected from insects that were fed in the laboratory and placed in 1.5-mL microcentrifuge tubes. Approximately 50 µL of clear urine was injected into Novy, Nicolle, & MacNeal culture medium (13). The cultures were positive for parasites confirmed to be T. cruzi, on the basis of morphologic criteria. Inspection of the second residence failed to indicate a bug infestation; however, the pet owner recalled frequently observing both rats (Rattus spp.) and opossums (Didelphis virginiana) on the premises. At the first site, three of the four dogs tested positive for T. cruzi, with titers ranging from 1:128 to 1:256. Neither of the two persons had positive antibody titers against T. cruzi. At the second site, only the previously diagnosed dog tested positive, with a titer of 1:256. The other two dogs tested negative, as did the pet owner. Serum samples from stray dogs from Cameron County, Texas, were tested for anti–T. cruzi antibodies. Of 375 dogs tested, 28 (7.5%) were positive by IIF, with titers ranging from 1:32 to 1:512. The sensitivity of this test in humans is 98.8% (pers. comm., Patricia P. Wilkins, Division of Parasitic Diseases, CDC). Because of the low specificity of serologic tests for distinguishing T. cruzi from Leishmania spp., all positive samples were tested for antibodies to L. donovani. A low level of cross-reactivity was observed in 17 of the 28 samples. In each case, however, the titer was 1–2 dilutions less than the titer to T. cruzi, indicating a primary response to T. cruzi rather than to Leishmania spp. Ecologic niche models for T. gerstaeckeri were developed by using GARP, based on published and unpublished collection records from Mexico and the southwestern United States. The model predicted a distribution for this species that extends from central Mexico, through central Texas, the Texas panhandle, into northern Texas and southeastern New Mexico (Figure 5).
    Conclusions

    Triatoma gerstaeckeri is considered a sylvatic species, most frequently associated with pack rat (Neotoma spp.) burrows (4). Although individual triatomine insects occasionally invade domestic dwellings throughout the southwestern United States and Mexico (4,5,14), this species has not been reported to colonize these habitats. In this investigation, colonization appears to have occurred, based on the observation of large numbers of bugs, including ones in immature stages. In the Chagas disease–endemic regions of South and Central America, the primary risk for insect transmission to humans is related to the efficiency with which local vector species can invade and colonize homes, resulting in a domestic transmission cycle for what is otherwise exclusively a zoonotic disease in the southern United States. In disease-endemic countries, higher house infestation rates generally result in a higher risk of transmission. At the first site in south Texas, six dogs either died or tested positive for T. cruzi, and 24 of 31 bugs contained hindgut trypanosomes. These observations demonstrate the existence of a domestic transmission cycle for an insect species that is typically considered a zoonotic vector. Whether this observation represents an isolated case or actually occurs more frequently but remains unrecognized, indicating an emerging public health problem, remains to be determined. The serologic results in stray dogs are very similar to those reported in previous studies from the region, suggesting that the disease is stably maintained in this reservoir host (15,16). The distributional predictions based on GARP models indicate a potentially broad distribution for this species and suggest additional areas of risk beyond those previously reported (14), should this problem become of greater public health concern.

    Dr. Beard is chief of the Vector Genetics Section in the Division of Parasitic Diseases, Centers for Disease Control and Prevention. His research focuses on the molecular biology of insect disease vectors and the molecular epidemiology of Pneumocystis pneumonia in HIV-infected persons.

    References

    1. Schmunis GA. Iniciativa del Cono Sur. In: Schofield CJ, Ponce C, editors. Proceedings of the second international workshop on population biology and control of Triatominae, Col. Santo Tomás, México: Instituto Nacional de Diagnostico y Referencia Epidemiológicos; 1999. p. 26–31.
    2. Monteiro FA, Escalante AA, Beard CB. Molecular tools and triatomine systematics: a public health perspective. Trends Parasitol 2001;17:344–7.
    3. Herwaldt BL, Grijalva MJ, Newsome AL, McGhee CR, Powell MR, Nemec DG, et al. Use of polymerase chain reaction to diagnose the fifth reported US case of autochthonous transmission of Trypansoma cruzi, in Tennessee, 1998. J Infect Dis 2000;181:395–9.
    4. Lent H, Wygodzinski P. Revision of the Triatominae (Hemiptera: Reduviidae) and their significance as vectors of Chagas disease. Bull Am Mus Nat Hist 1979;163(Pt. 3):123–520.
    5. Ryckman RE. The Triatominae of North and Central America and the West Indies: a checklist with synonymy (Hemiptera: Reduviidae: Triatominae). Bulletin of the Society of Vector Ecologists 1984;9:71–8.
    6. Camargo M. 1969. Cross-reactivity in fluorescence tests for Trypanosoma and Leishmania antibodies. Am J Trop Med Hyg 1969;18:500–5.
    7. Kagan IG. Serodiagnosis of parasitic diseases. In: Lennet EH, Balows A, Hausler WJ, Truant JP, editors. Manual of clinical microbiology. 3rd ed. Washington: American Society for Microbiology; 1980. p. 724–50.
    8. Stockwell DRB, Noble IR. Induction of sets of rules from animal distribution data: a robust and informative method of analysis. Mathematics and Computers in Simulation 1992;33:385–90.
    9. Stockwell DRB. Genetic algorithms II. In: Fielding AH, editor. Machine learning methods for ecological applications. Boston: Kluwer Academic Publishers; 1999. p. 123–44.
    10. Stockwell DRB, Peters DP. The GARP modeling system: problems and solutions to automated spatial prediction. International Journal of Geographic Information Systems 1999;13:143–58.
    11. Costa J, Peterson AT, Beard CB. Ecological niche modeling and differentiation of populations of Triatoma brasiliensis Neiva, 1911, the most important Chagas disease vector in northeastern Brazil (Hemiptera, Reduviidae, Triatominae). Am J Trop Med Hyg 2002;67:516-20.
    12. Peterson AT, Sanchez-Cordero V, Beard CB, Ramsey JM. Identifying mammal reservoirs for Chagas disease in Mexico via ecological niche modeling of occurrences of ectoparasites and hosts. Emerg Infect Dis 2002;8:662–7.
    13. American Society for Microbiology. Clinical microbiology procedures handbook. Section 7. Parasitology. Washington: American Society for Microbiology; 1992.
    14. Sullivan TD, McGregor T, Eads RB, Davis J. Incidence of Trypanosoma cruzi, Chagas, in Triatoma (Hemiptera, Reduviidae) in Texas. Am J Trop Med Hyg 1949;29:453–8.
    15. Burkholder JE, Allison TC, Kelly VP. Trypanosoma cruzi (Chagas) (Protozoa: Kinetoplastida) in invertebrate, reservoir, and human hosts of the lower Rio Grande Valley of Texas. J Protozol 1980;66:305–11.
    16. Bradley KK, Bergman DK, Woods, JP, Crutcher JM, Kirchoff LV. Prevalence of American trypanosomiasis (Chagas disease) among dogs in Oklahoma. J Am Vet Med Assoc 2000;217;1853–7.
    Resistance to tyrants is obedience to God

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •